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Abstract

A method is developed for the static stress and deformation analysis of axisymmetric shells under axisymmetric loading

by reduction of the shell to ring sections. In particular, the wall thickness of the shell may vary and the method is applicable

to the analysis of shells with irregular meridional geometry. Explicit expressions for the influence coefficients for each ring

element are derived. In the development of these expressions, exact evaluation of stresses in the circumferential direction of

the ring is used. The distribution of stresses in the meridional direction of the ring element is assumed to be linear with each

element. By using the derived influence coefficients, the unknown forces at the junctures of the ring elements are found by

the standard flexibility method of indeterminate structural analysis. Subsequently, the displacements and internal stresses

are determined. Example solutions for a flat circular plate under transverse loading and for a cylindrical shell under a

boundary edge loading show excellent agreement with solutions found by solving the governing differential equations.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In the absence of closed-form static or dynamic solutions for the general shell, several investigators have
obtained solutions for both the static problem and the dynamic problem by numerical methods. Included in
these investigators were Penny [1], who solved the symmetric bending problem of a general shell in 1961 by
finite differences; Radkowski et al. [2], who solved the axisymmetric static problem in 1962 by finite
differences; and Budiansky and Radkowski [3], who used finite difference methods to solve the unsymmetrical
static bending problem in 1963.

In 1964, Kalnins [4] also solved the static problem of rotationally symmetric shells of revolution subjected to
both symmetrical and nonsymmetrical loading. Beginning with the equations of the linear classical bending
theory of shells, in which the thermal effects were included, he derived a system of eight first-order ordinary
differential equations that were solved by direct numerical integration over preselected segments of the shell.
The resulting system of matrix equations obtained by providing continuity of the fundamental variables at the
segmental division points was solved by Gaussian elimination.

The solution for the free vibration characteristics of rotationally symmetric shells with meridional variations
in the shell parameters by means of his multisegment direct numerical integration approach was also obtained
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

a flexibility matrix for the base structure,
Fig. 13

aij deflection of base structure in coordinate
i due to a unit value of force in
coordinate j, elements of flexibility ma-
trix a

A cross-sectional area of ring element
c value of coordinate y0 at coordinate 1,

Fig. 1
d value of coordinate y0 at coordinate 2,

Fig. 1
Di0 deflection of base structure in coordinate

i due to a combined external loading and
temperature change, elements of column
matrix of displacements with F ¼ 0

E Young’s modulus
F column matrix of redundant forces
F 01 unit virtual longitudinal force per unit

length applied at ring coordinate 1
h height of ring element measured parallel

to ring element axis of symmetry
H1 radial force per unit length applied at

ring coordinate 1
H2 radial force per unit length applied at

ring coordinate 2
H 01 unit virtual radial force per unit length

applied at ring coordinate 1
H 02 unit virtual radial force per unit length

applied at ring coordinate 2
Hp radial load per unit length at R3 due to

external pressure
HT

P total circumferential radial loading from
HP

Iz
0 moment of inertia of ring cross section

about z0 axis
‘ meridional length of ring element, Fig. 1
L longitudinal load per unit length applied

at ring coordinate 1
Mz
0, My

0 induced internal moments about z0 and
y0 axes, respectively, due to applied
loadings

Mj total internally redundant meridional
moment in coordinate j of the base
structure

my0 virtual moment applied about y0 axis at
points A and B, Fig. 2

p uniform pressure on ring element surface
Pi total internally redundant radial force in

coordinate i of the base structure

Q temperature rise of ring
R radius of centroid of ring element cross

section
R1 radius of ring element cross section at

ring coordinate 1
R2 radius of ring element cross section at

ring coordinate 2
R3 radius of center of pressure for uniform

pressure on outer face of ring element
s variable distance measured along ring

element meridian from coordinate 1
S direct force due to radially applied loads
t thickness of ring element of rectangular

cross section
t1 thickness of ring element measured nor-

mal to meridional centerline at coordi-
nate 1

t2 thickness of ring element measured nor-
mal to meridional centerline at coordi-
nate 2

T torque per unit length about centroid of
ring cross section

Tp torque per unit length about centroid of
ring cross section due to external pres-
sure

TL torque per unit length about centroid of
ring cross section due to L

T01 torque per unit length about centroid of
ring cross section due to combined
pressure and longitudinal loading with
pressure loading resisted at R1

T02 torque per unit length about centroid of
ring cross section due to combined
pressure and longitudinal loading with
pressure loading resisted at R2

T3 meridional moment per unit length ap-
plied at ring coordinate 3

T4 meridional moment per unit length ap-
plied at ring coordinate 4

T 03 unit virtual meridional moment per unit
length applied at ring coordinate 3

T 04 unit virtual meridional moment per unit
length applied at ring coordinate 4

Vp1 longitudinal load per unit length resisted
at ring coordinate 1 due to pressure
loading

Vp2 longitudinal load per unit length resisted
at ring coordinate 2 due to pressure
loading

Vp longitudinal load as force per unit length
at R3 due to external pressure
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VT
p total circumferential loading Vp

a angle between plane of middle surface of
ring element and axis of symmetry of the
element

b coefficient of thermal expansion of ring
material

diH1
deflection of ring element in ring coordi-
nate i due to H1

diH2
deflection of ring element in ring coordi-
nate i due to H2

diT3
deflection of ring element in ring coordi-
nate i due to T3

diT4
deflection of ring element in ring coordi-
nate i due to T4

dVH1
change of length of ring element in
longitudinal direction due to H1

dVH2
change of length of ring element in
longitudinal direction due to H2

dVT3
change of length of ring element in
longitudinal direction due to T3

dVT4
change of length of ring element in
longitudinal direction due to T4

dij deflection of ring element in ring coordi-
nate i due to a unit value of force in
coordinate j

dVj change of length of ring element in
longitudinal direction due to a unit of
force in coordinate j

di0 deflection of ring element in ring coordi-
nate i due to external loading only

dV0 change of length of ring element in
longitudinal direction due to external
loading only

diT deflection of ring element in ring coordi-
nate i due to temperature change

dVT change of length of ring element in
longitudinal direction due to temperature
change

dðnÞij deflection of ring element in ring coordi-
nate i due to a unit value of force in
coordinate j for ring associated with the
number n

DðnÞi0 deflection of ring element in ring coordi-
nate i due to combined external loading
and temperature change for ring asso-
ciated with the number n

Di0 deflection of ring element in ring coordi-
nate i due to combined external loading
and temperature change

DV0 change of length of ring element in
longitudinal direction due to combined
external loading and temperature change

DðnÞj displacement of the nodal line coordinate
j for the ring element n due to all effects

Dy0 change in longitudinal length of structure
due to all effects

Ax strain in circumferential direction of ring
element

Ay strain in meridional direction of ring
element

Ax(j) strain in circumferential direction of ring
element due to j

Ay(j) strain in meridional direction of ring
element due to j

A(j) strain in ring element due to j

A(0) strain in ring element due to external
loading only

2
ðnÞ
xðAAÞ strain in circumferential direction at

point AA of the ring element n

2
ðnÞ
xðBBÞ strain in circumferential direction at

point BB of the ring element n

v Poisson’s ratio
sx stress in circumferential direction of ring

element
sy stress in meridional direction of ring

element
sx(j) stress in circumferential direction of ring

element due to j

sy(j) stress in meridional direction of ring
element due to j

s( j) stress in ring element due to j

sðnÞyðAAÞ meridional stress at point AA of the ring

element n

sðnÞyðBBÞ meridional stress at point BB of the ring
element n

sx(Mz0) stress sx due to Mz0 , Eq. (2)
sx(My0) stress sx due to My0 , Eq. (3)
sx(my) stress sx due to virtual moment my, Eq.

(6a)
sx(B) stress sx due to bending, Eq. (8)
sx(D) stress sx due to direct forces, Eq. (10)
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by Kalnins [5] in 1964. Subsequently, in 1965, the solution for the response of an arbitrary shell subjected to
time-dependent surface loadings was obtained by Kraus and Kalnins [6] by means of the classical method of
spectral representation. The solution was expanded in terms of the modes of free vibration as determined
previously by Kalnins [5], and the orthogonality of the normal modes was proved for an arbitrary shell.

In 1965, a finite element technique for the analysis of shells of revolution under both axisymmetric and
asymmetric static loading was developed by Percy et al. [7] by idealizing the shell as a series of conical frusta.

In 1966, Smith [8] published his development of procedures for the static analysis of axisymmetric shell
structures under axisymmetric loading by reduction of the shell to a series of ring sections. In particular, the
method may be used to analyze shells with irregular meridional geometry. Explicit expressions for influence
coefficients for each ring element are derived. Solutions are obtained by the flexibility method of indeterminate
structural analysis. Programming of the equations developed in Ref. [8] for use in obtaining solutions on an
electronic computer was accomplished by Patrick [9].

In 1966, Klein [10] also published an article describing a matrix displacement finite element approach to the
linear elastic analysis of multilayer shells of revolution under axisymmetric and asymmetric dynamic and
impulsive loadings. The method of solution treats the shell as a series of conical frusta joined at nodal circles.

Subsequently, Smith [11,12] published reports in which numerical procedures were given for determining the
dynamic response of rotationally symmetric thin shells of revolution under time-dependent distributed
impulsive and thermal loadings. The field equations consist of eight first-order partial differential equations
with respect to the axis of symmetry of the shell, and the solution for each Fourier harmonic is obtained by
using low-order finite difference representations for all time and spatial derivatives. Explicit relations are used
to obtain displacements normal to the middle surface and along the meridians of the shell for node points
inside the shell boundaries for the second and later time increments.

In 1973, Smith [13] published a report describing static solutions and stable implicit numerical solutions for
the dynamic response of rotationally symmetric thin shells of revolution under time-dependent surface and
thermal loadings by using a high-order finite difference representation of spatial derivatives in the system of
eight first-order partial differential equations.

In 1975, Radwan and Genin [14] published their development of the equations for determining the
nonlinear response of thin elastic shells of arbitrary geometry under either static or dynamic loading through
the use of assumed, known, or calculated mode shape functions.

In 1977, Smith [15,16] published reports describing numerical procedures for determining the static or
dynamic response of rotationally symmetric thin shells of revolution by use of both a high-order finite
difference representation of the spatial derivatives and explicit relations for the dependent variables within the
boundary edges of the shell for the second and succeeding time increments. The system of equations was
formulated with the transverse, meridional, and circumferential displacements as the dependent variables.

In 1983, Chang et al. [17] published their development for the linear dynamic analysis of rotationally
symmetric shells using finite elements and modal expansion.

In 1983, Smith [18,19] presented numerical formulations for determining both static and dynamic solutions
for rotationally symmetric thin shells of revolution subjected to distributed loadings which may be
discontinuous.

In 1991, Smith [20,21] completed the development of procedures for determining the total shell response of
any rotationally symmetric general shell under time-dependent (or static) surface loadings by the modal
superposition method.

In 1992, Heppler and Wahl [22] published their article on finite element analysis of free–free shells of
revolution, which demonstrated that by use of nonconventional basis functions in the finite element method
analysis the six rigid body modes are recovered as the first six modes for the case of unrestrained shells. Studies
included evaluation of the vibration modes for a series of shells with both restrained and unrestrained
boundaries.

In 1993, Sivadas and Ganesan [23] published their development of procedures for the dynamic analysis of
rotationally symmetric circular cylindrical shells for which shell damping, shear deformation, and rotary
inertia were considered in the analysis. An axisymmetric finite element representation of the shell in
conjunction with a solution by the modal superposition method for either isotropic or laminated shells
was used.
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In 1994, Smith [24] published a second report incorporating revisions to Ref. [15], which resulted in
improved numerical solutions obtained from the system of finite difference equations.

In 1995, Sinha and Mukhopadhyay [25] published their development for the dynamic analysis of stiffened
plates and shells by the use of arbitrarily shaped triangular shell elements for which stiffeners may lie in any
arbitrary direction within the element. The system of governing equations of motion is solved by employing
the Newmark iterative method.

In 1997, Goncalves and Ramos [26] published their analysis for the free vibration of thin-walled cylindrical
shells subject to homogeneous boundary conditions at each boundary of the shell. The system of equations
consists of eight first-order ordinary differential equations with the four displacements and the four force
variables which enter into the displacement and natural boundary conditions at each boundary of the shell as
the eight fundamental variables. Variables in the circumferential direction of the shell are expanded in Fourier
series.

In 1998, Meek and Wang [27] presented their analysis for the nonlinear static and dynamic response of shell
structures with finite rotation. The finite element used to model the shell structure is a flat-faceted triangular
shell element. An incremental iteration method in conjunction with the Newton–Raphson method is used for
static analysis, while the integration scheme of Newmark is employed for dynamic analysis.

In 1998, Smith [28,29] published his analysis of shell behavior based on the use of the transverse, meridional,
and circumferential displacements as the fundamental variables in the field equations. The system of equations
is converted to a system of ordinary spatial finite difference equations for which a variable nodal point spacing
may be used together with an ordinary finite difference representation for the time derivatives. Explicit
relations are obtained for the displacements within the boundary edges of the shell for the second and later
time increments. Included is the development and implementation of a numerical stability (or instability)
criterion based upon an eigenvalue analysis of the explicit coefficient matrices for any selected spatial finite
difference mesh and time step increment. The eigenvalues and eigenvectors of the explicit coefficient matrices
are found by use of an accompanying computer program subroutine EIGNCX given and described in Ref.
[30].

In 2004, Ozkul [31] published his development for the dynamic analysis of general shells by use of the finite
element method. The finite element used to model the complete shell structure is a curved isoparametric eight-
node trapezoidal element with five degrees of freedom per node. Hamilton’s principle is used to develop the
equations of motion for the shell and the Wilson-y integration method is used for the solution of these
equations. Shear deformation and rotary inertia are considered in the development.

The purpose of this article is to make available in the open literature the developed formulae for the
individual ring element influence coefficients as well as the analytical procedures contained in Ref. [8] for the
linear static analysis of rotationally symmetric shell structures of highly irregular geometry under
axisymmetric loading. It will be seen by comparison of solutions obtained by the methods of Ref. [8] and
by exact solutions of the applicable differential equations for typical plate and shell structures that the results
are in very close agreement.
2. Discussion and assumptions

The equations of Ref. [8] were developed specifically to provide a needed capability to analyze the behavior
of shell structures of irregular geometrical shapes not readily defined mathematically. The method of analysis
is essentially the flexibility method of indeterminate structural analysis. To apply this method, the shell or
plate structure has been reduced to a series of individual ring elements with a redundant radial force and a
redundant shell bending moment as the unknowns at the interior faces of adjoining ring elements. It is
generally assumed that force boundary conditions will be applied at the boundary edges of the reduced shell or
plate structure. In the cases of displacement boundary conditions, the corresponding force boundary
conditions may be readily determined by prior solution of four equations whose elements have been found by
utilizing the influence coefficients for all ring elements of the complete shell or plate structure. It is assumed
that there is no redundancy in the axial direction of the shell or plate structure and provision is made
for prescribing zero displacement in the axial direction at either boundary of the shell or plate structure.



ARTICLE IN PRESS
T.A. Smith / Journal of Sound and Vibration 318 (2008) 428–460 433
Total elongation of the shell or plate in the axial direction is found by summing the axial elongations for all
ring elements under the prescribed loadings.

The development of the equations for the ring displacements will be made for a conical ring element of
rectangular cross section (or assumed equivalent rectangular cross section) with the restriction that the
meridional length of the cross section shall preferably be not greater than one and one-half times the shell
element thickness. The ratio of the radius of the centroid of the ring element cross section to the ring thickness
shall preferably be not less than 20. Circumferential, meridional, and shear stresses in the ring elements shall
be finally determined from the actual dimensions of the ring element. Circumferential stresses in the structure
shall be determined from a consideration of the stress–strain relations.

In the development, it will be assumed that the bending moment stresses in the circumferential direction for
the ring elements are distributed in the same manner as they are assumed to be distributed in a straight beam
section, thus neglecting the effects of curvature on the stresses. Bending and direct stresses in the plane of the
cross section due to edge moments, radially applied forces, longitudinal loads, pressure loadings, and thermal
effects will be assumed to vary linearly between the edges of the cross section. Deformations due to shearing
stresses and direct stresses through the thickness of the ring cross section will be neglected. It will be assumed
that the material is homogeneous, isotropic, and linearly elastic and that the shell structure is subjected to
loadings that are statically applied.
3. Analysis for typical ring element

The geometry and the coordinate system for a typical ring element cross section are shown in Fig. 1. The
orientation of the middle surface of the rectangular cross section of the ring element with respect to the axis of
symmetry of the circular ring is defined by the angle a. The coordinate x is measured in the circumferential
direction of the ring at the centroidal axis of the cross section. With respect to the cross section, the coordinate
y is measured along the middle surface of the element from the centroidal axis and the coordinate z is
measured therefrom in a direction normal to the middle surface. The coordinate y0 is measured from the
centroidal axis in a line parallel to the axis of symmetry of the ring element and z0 is measured therefrom in a
direction normal to the axis of symmetry as shown in Fig. 1.

Before proceeding with the development of the influence coefficients for a typical ring element, it is
necessary to determine the circumferential stresses over the ring element cross section due to both uniformly
distributed applied torques T3 and T4 and radially applied forces H1 and H2. The circumferential stresses sx

will be expressed in terms of the y0–z0 system of coordinates. However, for purposes of integration over the
ring element cross section to determine the flexibility influence coefficients, the y–z system of coordinate will be
used. It is thus seen that the circumferential stresses will be as determined for a coordinate system of y0–z0

which has no axis of symmetry.
To aid in the development of the expressions for the forces and stresses on any ring element cross section

shown in Fig. 1, plans and sections showing these forces are given in Fig. 2. Shown in Fig. 2 are a plan view of
the ring element, a cross section showing the y0–z0 coordinate system, and a plan view of half of a ring element
showing real and virtual forces applied thereto. From the half-plan view, it is seen that, for a uniform torque T

around the element, equilibrium requires that

Mz0 ¼

Z p=2

0

TR cosfdf ¼ TR: (1)

To determine My0, cut the structure on the diametral line A2–B2 and apply a unit virtual moment my0 ¼ 1 as
shown in Fig. 2 before the application of the torque T. Let y11 ¼ the rotation at points A2 and B2 about the y0

axis due to my0 ¼ unity at A2 and B2. And let y10 ¼ the rotation at points A2 and B2 about the y0 axis with
My0 ¼ 0.

The stresses sx in the ring element due to Mz0 are by Eq. (132) of Ref. [32]

sxðMz0 Þ ¼
Mz0 ðIy0y

0 � Iz0y0z
0Þ

Iz0Iy0 � I2z0y
0

. (2)
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Fig. 1. Typical ring element cross section and coordinate systems. The x coordinate is measured circumferentially. AA, BB, CC, and DD

are the corners of the ring element.
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The stresses sx due to My0 are by Eq. (133) of Ref. [32]

sxðMy0 Þ ¼
My0 ðIz0y0y

0 � Iz0z
0Þ

Iz0y0 � I2z0y0
. (3)

To facilitate the determination of y11, y10, and hence MY0, the substitution is made that

y0 ¼ Y

z0 ¼ Z:
(4)

The rotation y11 may be found from the relation

mYy11 ¼
Z p=2

0

Z
A

s2xðmyÞdAds

E
. (5a)

By using Eqs. (3) and (4), observing that IZ ¼
R

A
Y 2dA, IY ¼

R
A

Z2dA, and IZY ¼
R

A
YZdA and that

mY ¼ unity, it is found that

y11 ¼
pRIZ

2EðIZIY � I2ZY Þ
. (5b)

The rotation y10 is found from the relation

mYy10 ¼
Z p=2

0

Z
A

sxðMZÞsxðmY ÞdAds

E
. (6a)

By using Eqs. (2)–(4), noting that IZ ¼
R

A
Y 2 dA, IY ¼

R
A

Z2 dA, and IZY ¼
R

A
YZ dA, and that

mY ¼ unity, it is seen that

y10 ¼
pRMZIZY

2EðIZIY � I2ZY Þ
. (6b)
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T = constant

Centroid of
cross section

Ring element
axis of 
symmetry

Section A-APlan of ring element

A A

Forces on half ring element

B2

A2

R

T

R

T
Y

Z

R

Mz

Mz

My my,

My my,

Fig. 2. Plans and sections showing forces on typical ring element. A2 and B2 are at the centroid of ring element cross section.
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The value of MY may be found from

y11MZ þ y10 ¼ 0; from which (7a)

MY ¼ �
MZIZY

IZ

. (7b)

The total value of sx developed by the torque T is given by summing the expressions in Eqs. (2) and (3),
while substituting Eq. (7b) for MY into Eq. (3). Thus, it is found that

sx ¼
MZY

IZ

.

By using Eqs. (4), the equation for sx due to bending may be written as

sxðBÞ ¼
Mz0y

0

Iz0
, (8)

where Mz0 is the ring element cross-section bending moment about the z0 axis and Iz0 is the moment of inertia
of the ring element cross section about the z0 axis.

The stresses sx by Eq. (8) are only those stresses due to bending of the ring element due to axisymmetric
torques T1, T2, H1, H2, and other applied loadings about the centroidal axis of the element. In the case where
radial forces (typically H1) are also applied, there are developed in the ring element not only bending stresses
but also direct stresses which must be added to the bending stresses. Typically, for a radial force H1 applied at
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coordinate 1 in Fig. 1, the direct circumferential force S in the ring element becomes

S ¼

Z p=2

0

H1R cosfdf ¼ H1R1. (9)

The stress sx in the ring element due to direct forces (typically for the H1 application) is therefore

sxðDÞ ¼
H1R1

A
. (10)

In the development of the expressions for the ring element influence coefficients, both bending stresses and
any developed direct stresses will be considered.

In addition to the stresses sx discussed immediately hereinbefore, the meridional stresses sy are to be
considered. These are the stresses caused by the meridional bending moments Mx about the circumferential
coordinate line x described in Fig. 1, by the radial forces normal to the axis of symmetry of the ring element,
and by any applied or induced forces acting on the ring element. In general, for the development of the ring
element influence coefficients, the forces H1 and H2 are assumed to be uniformly distributed across the
thickness t of the element at the respective points of application, and they are zero at the opposite edge of
the element. The meridional direct stresses sy have been assumed to vary linearly between these two edges of
the element. In a similar vein, the bending stresses sy have been assumed to vary linearly between the element
edges. The stresses sy due to each of the applied forces H1, H2, T3, and T4 based upon the above assumptions
may be developed directly from Fig. 1, where the coordinate s shown there is given by

s ¼ �yþ 0:5‘ (11)

and where the circumference of the ring element at any value of s is given by

b ¼ 2pðR1 þ s sin aÞ. (12)

The stresses sy(H1) are therefore

syðH1Þ ¼ �
2pR1H1 sin að1� s=‘Þ

bt
¼ �

R1H1 sin aðy=‘ þ 0:5Þ

t½R1 þ ð�yþ ‘=2Þsin a�
(13)

The stresses due to H2 are

syðH2Þ ¼ �
ðR2H2 sin aÞs

tðR1 þ s sin aÞ‘
¼

R2H2 sin aðy=‘ � 0:5Þ

t½R1 þ ð�yþ 0:5‘Þsin a�
. (14)

The total applied circumferential bending moment due to T3 is

MT
x ¼ 2pR1T3ð1� s=‘Þ,

while the circumferential moment of inertia is

IT
x ¼ 2pðR1 þ s sin aÞt3=12,

where MT
x and IT

x are the values of Mx and Ix around the total circumference.
Hence, the bending stress sy is found from

syðT3Þ ¼ �
MT

x z

IT
x

¼ �
12R1T3ð1� s=‘Þz

ðR1 þ s sin aÞt3
¼ �

12R1T3ðy=‘ þ 0:5Þz

½R1 þ ð�yþ 0:5‘Þsin a�t3
. (15)

The total circumferential bending moment due to T4 is

MT
x ¼ �2pR2T4ðs=‘Þ.

Hence, the bending stress sy is given by

syðT4Þ ¼
MT

x z

IT
x

¼ �
12R2T4ðs=‘Þz

ðR1 þ s sin aÞt3
¼

12R2T4ðy=‘ � 0:5Þz

½R1 þ ð�yþ 0:5‘Þ sin a�t3
. (16)

It is clear from the denominators of Eqs. (13)–(16) that the stresses sy under given loadings at the
boundaries of the ring element for values of a greater than zero are reduced as values of s are increased.
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However, the values of s sin a on the interval 0pspl are expected to be relatively small compared to the values
of R1, R, and R2. Thus, it appears that the term s sin a in Eqs. (13)–(16) can be neglected and that the term
(R1+s sin a) can be replaced by the average radius R at the centroid of the ring element cross section in
determining the stresses sy to be used to determine the ring element influence coefficients. Example solutions
included in this article for which solutions for both a cylindrical shell and a circular plate as obtained by the
flexibility methods developed here and as obtained by solutions of the governing differential equations
demonstrate that the above-described assumption of the stresses sy to determine the ring element influence
coefficients results in an insignificant error in the final results. Definition of the stresses sy will therefore be
given by modification of Eqs. (13)–(16) as just described above to evaluate the ring element influence
coefficients.

The relations between the y0 and z0 system of coordinates and the y and z coordinate system are given by

z0 ¼ z cos aþ y sin a, (17a)

y0 ¼ �z sin aþ y cos a. (17b)

The displacement influence coefficients for an individual ring element will be found by first applying forces
at and in the direction of coordinate 1 while all other forces are zero and calculating the displacements at and
in the coordinate directions 1, 2, 3, and 4. This operation will be repeated with forces applied in turn in only
the coordinate directions 2, 3, and 4, respectively. These displacements will be determined by the elastic energy
theory as given by Van den Broek [33]. Basically, as applied here, we impose on the ring element an external
system of virtual forces applied in the location and direction for which we desire the displacements before we
apply the actual loads. This develops in the ring element a system of virtual stresses. Upon subsequent
application of the actual loading, external work is done by the externally applied virtual forces acting through
the external displacements caused by the actual loading. Internal work in the ring element is done by the
internal virtual stresses moving through the internal strains caused by the actual loading. By equating external
and internal work, we obtain our expressions for the actual external displacement at the point or line of the
virtual load application.

4. Displacements of ring due to H1

To determine the displacements d1H1
; d2H1

; d3H1
; d4H1

, and dVH1
; we first apply the virtual loading H 01 at and

in the direction of ring coordinate 1 prior to application of the actual loading H1, where, typically, H1 is the
radial force per unit length in the direction of coordinate 1, and where, typically, d1H1

represents the deflection
in the direction of coordinate 1 due to H1, and where, typically, H 01 is a unit virtual radial force per unit length
in the direction of coordinate 1. Subsequently, we apply the actual loading H1. The meridional stress diagram
due to H1 as shown in Fig. 3 is identical to the meridional stress diagram (not shown) due to the virtual
loading H 01. Under these loadings (and by using Eqs. (1), (8), and (10)), our actual stresses sx are seen to be

sx ¼
H1R1c

Iz0
y0 þ

H1R1

A
¼

H1R1c

Iz0
ðy cos a� z sin aÞ þ

H1R1

A
. (18a)

It may be seen from Fig. 3 and discussions hereinbefore relative to Eq. (13) that the stresses sy are
represented very closely by

sy ¼ �
H1R1 sin a

Rt

y

‘
þ

1

2

� �
, (18b)

while the virtual stresses are

sxðH 01Þ
¼

H 01R1c

Iz0
ðy cos a� z sin aÞ þ

H 01R1

A
, (19a)

syðH 01Þ
¼ �

H 01R1 sin a
Rt

y

‘
þ

1

2

� �
. (19b)
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The actual strains are

2xðH1Þ ¼
1

E
ðsx � nsyÞ ¼

H1R1

E

c

Iz0
ðy cos a� z sin aÞ þ

1

A
þ

n sin a
Rt

y

‘
þ

1

2

� �� �
, (20a)

2yðH1Þ ¼
1

E
ðsy � nsxÞ ¼

H1R1

E
�
sin a
Rt

y

‘
þ

1

2

� �
�

nc

Iz0
ðy cos a� z sin aÞ �

n
A

� �
. (20b)

By equating the external and internal work done by the above systems of actual and virtual forces, one
obtains by using Eqs. (19) and (20) the expression for finding d1H1

as

2pR1H
0
1d1H1

¼

Z
v

2ðH1Þ
s
ðH 01Þdv ¼ 2pR

Z
A

H1R1

E

c

Iz0
ðy cos a� z sin aÞ þ

1

A
þ

n sin a
Rt

y

‘
þ

1

2

� �� �
H 01R1

�

�
c

Iz0
ðy cos a� z sin aÞ þ

1

A

� �
dydzþ

Z
A

�
H1R1

E

sin a
Rt

y

‘
þ

1

2

� �
þ

nc

Iz0
ðy cos a� z sin aÞ þ

n
A

� �

� �
H 01R1 sin a

Rt

y

‘
þ

1

2

� �� �
dydz

�
. (21)

Upon performing the integrations in Eq. (21), one finds the expression for the displacement in the direction
of coordinate 1 under the H1 loading as

d1H1
¼

H1RR1

E

c2

Iz0
þ

1

A
þ

nc‘2 sin a cos a
6RIz0

þ
n sin a

Rt
þ
‘ sin2 a
3R2t

� �
. (22)

To obtain our displacement at coordinate 2 due to the H1 loading, we impose the virtual loading H02 at
coordinate 2 prior to application of the H1 loading. The meridional stress diagram under the H02 loading is
shown in Fig. 4. The virtual stresses sx induced by the H02 loading are found from Eqs. (1), (8), and (10) to be

sxðH
0
2Þ ¼

H 02R2d

Iz0
ðy cos a� z sin aÞ �

H 02R2

A
. (23a)
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It is seen from Fig. 4 and previous discussions relative to Eq. (14) that the stresses sy are given quite
closely by

syðH
0
2Þ ¼

H 02R2 sin a
Rt

y

‘
�

1

2

� �
. (23b)

By applying the principle of virtual work, we find our expression for determining d2H1
as

2pR2H
0
2d2H1

¼

Z
v

2 ðH1ÞsðH 02Þdv: (24)

By substituting Eqs. (20) and (23) into Eq. (24) and performing the integrations, one finds

d2H1
¼

H1RR1

E

cd

Iz0
�

1

A
þ
‘ sin2 a
6R2t

� �
. (25)

To find the rotational displacement d3H1
due to the H1 loading, we apply the virtual loading T 03 at and in the

direction of coordinate 3 before application of the H1 loading. The meridional moment diagram for the T 03
loading is shown in Fig. 5. The virtual meridional moment M 0

x due to the T 03 loading is seen from Fig. 5 and
from the previous development and discussions relative to Eq. (15) to be

M 0
x ¼ T 03

y

‘
þ

1

2

� �
R1

R
. (26)

The virtual stresses sx caused by the T 03 loading are given by Eq. (8) as

sxðT
0
3Þ ¼

Mz0y
0

Iz0
¼ �

T 03R1

Iz0
ðy cos a� z sin aÞ. (27a)
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The virtual stresses sy due to M 0
x (Fig. 5) may be found from the previous development and discussions

relative to Eq. (15) to be

syðT
0
3Þ ¼ �

M 0
xz

Ix

¼ �
12T 03z

t3
y

‘
þ

1

2

� �
R1

R
. (27b)

By invoking and applying the principle of virtual work, we find our equation for determining d3H1
to be

2pR1T
0
3d3H1

¼

Z
v

2 ðH1ÞsðT 03Þdv. (28)

Upon substituting Eqs. (20) and (27) into Eq. (28) and performing the integrations, one finds

d3H1
¼ �

H1RR1

EIz0
cþ

n‘2sin a cos a
12R

þ
nc‘ sin a

2R

� �
. (29)

To determine the rotational displacement d4H1
caused by the H1 loading, we apply the virtual loading T 04 at

and in the direction of coordinate 4 before applying the H1 loading. We show the meridional moment diagram
for the T 04 loading in Fig. 6. The virtual meridional moment M 0

x for the T 04 loading is seen from Fig. 6 and
from the previous development and discussions relative to Eq. (16) to be

M 0
x ¼ T 04

y

‘
�

1

2

� �
R2

R
. (30)

The virtual stresses sx developed by the T 04 loading are found by Eq. (8) to be

sxT 04 ¼
T 04R2

Iz0
ðy cos a� z sin aÞ. (31a)
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The virtual stresses due to M 0
x (Fig. 6) may be found from the previous development and discussions relative

to Eq. (16) to be

syðT 04Þ
¼

12T 04z

t3
y

‘
�

1

2

� �
R2

R
. (31b)

Upon application of the principle of virtual work, we obtain our expression for finding d4H1
to be

2pR2T
0
4d4H1

¼

Z
v

2 ðH1ÞsðT 04Þdv. (32)

By substitution of Eqs. (20) and (31) into Eq. (32) and performing the integrations, one finds the equation
for d4H1

to be

d4H1
¼

H1RR1

EIz0
cþ

n‘2sin a cos a
12R

�
nc‘ sin a

2R

� �
. (33)

To determine the change in length of the ring element in the direction of the axis of symmetry due to H1, we
apply parallel to the axis of symmetry of the ring (before application of the real loading H1) the virtual loading
F 01 ¼ 1.0 lb per unit length in the circumferential direction of the ring as shown in Fig. 7. The virtual stresses
sx are found by use of Eqs. (1) and (8) to be

sxðF
0
1Þ ¼

F 01R1ðRz � R1Þ

Iz0
½y cos a� z sin a�. (34a)

In accordance with the development and discussion of Eqs. (13)–(16), the virtual stresses sy will be assumed
to be given by

syðF
0
1Þ ¼

F 01R1 cos a
Rt

. (34b)
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By invoking and applying the principle of virtual work, we find our equation for determining dVH1

to be

2pR1F 01dVH1
¼

Z
v

2 ðH1ÞsðF 01Þdv. (35)

By substitution of Eqs. (20) and (34) into Eq. (35) and performing the integrations, one finds the expression
for axial change in length of the ring element due to H1 to be

dVH1
¼

H1RR1

E

cðR2 � R1Þ

Iz0
þ

n‘2ðR2 � R1Þsin a cos a
12RIz0

�
‘ sin a cos a

2R2t
�

n cos a
Rt

� �
. (36)

5. Displacements of ring due to H2

In a manner similar to that used to develop the equations for deformations due to H1, the following
equations, which are based upon the application of H2 as the actual loading, are obtained for the deformations
due to H2:

d1H2
¼

H2RR2

E

cd

Iz0
�

1

A
þ
‘ sin2 a
6R2t

� �
(37)

d2H2
¼

H2RR2

E

d2

Iz0
þ

1

A
�

nd‘2 sin a cos a
6RIz0

þ
‘ sin2a
3R2t

�
n sin a

Rt

� �
. (38)

d3H2
¼

H2RR2

EIz0
�d þ

n‘2 sin a cos a
12R

�
nd‘ sin a

2R

� �
(39)

d4H2
¼

H2RR2

EIz0
d �

n‘2 sin a cos a
12R

�
nd‘ sin a

2R

� �
(40)

dVH2
¼

H2RR2

E

dðR2 � R1Þ

Iz0
�

n‘2ðR2 � R1Þsin a cos a
12RIz0

�
‘ sin a cos a

2R2t
þ

n cos a
Rt

� �
. (41)
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6. Displacements of ring due to T3

To derive the equations for deformations due to the actual loading T3, we proceed in the same manner
outlined above in detail for the H1 loading and find our equations for the displacements due to the T3 loading
to be

d1T3
¼ �

T3RR1

EIz0
cþ

n‘2 sin a cos a
12R

þ
nc‘ sin a

2R

� �
(42)

d2T3
¼

T3RR1

EIz0
�d þ

n‘2sin a cos a
12R

�
nd‘ sin a

2R

� �
(43)

d3T3
¼

T3RR1

EIz0
þ

nT3R1‘ sin a
EIz0

þ
4T3R1‘

ERt3
(44)

d4T3
¼ �

T3RR1

EIz0
þ

2T3R1‘

ERt3
(45)

dVT3
¼ �

T3RR1ðR2 � R1Þ

EIz0
1þ

n‘ sin a
2R

� �
. (46)
7. Displacements of ring due to T4

By proceeding in a manner similar to that used to find the equations for the H1 loading, we obtain the
following equations for the ring coordinate displacements due to the T4 loading:

d1T4
¼

T4RR2

EIz0
cþ

n‘2 sin a cos a
12R

�
nc‘ sin a

2R

� �
(47)

d2T4
¼

T4RR2

EIz0
d �

n‘2sin a cos a
12R

�
nd‘ sin a

2R

� �
(48)

d3T4
¼ �

T4RR2

EIz0
þ

2T4R2‘

ERt3
(49)

d4T4
¼

T4RR2

EIz0
�

nT4R2‘ sin a
EIz0

þ
4T4R2‘

ERt3
(50)

dVT4
¼

T4RR2ðR2 � R1Þ

EIz0
1�

n‘ sin a
2R

� �
. (51)
8. Loadings on free ring element due to uniform pressure with element restrained axially at R2

We assume for each individual ring element that the applied pressure loading is uniform and acts at the ring
element middle surface and that axial restraint against motion is developed at the edge of the ring associated
with the radius R2 as shown in Fig. 8. For purposes of analysis, we replace the pressure loading by
its components Hp applied radially and Vp applied normal thereto at the center of pressure as shown also in
Fig. 8.
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The area of the middle surface of the ring element is given by

G ¼ pðR1 þ R2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 � R1Þ

2
þ h2

q
. (52)

The loadings Hp and Vp applied at the center of pressure are given by

Hp ¼
Gp cos a
2pR3

¼
phðR1 þ R2Þ

2R3
, (53a)

V p ¼
Gp sin a
2pR3

¼
pðR2

2 � R2
1Þ

2R3
, (53b)

where Hp and Vp are the assumed equivalent uniform line loadings at the center of pressure due to the pressure
loading p as shown in Fig. 8, and where R3 is given by

R3 ¼
2ðR3

2 � R3
1Þ

3ðR2
2 � R2

1Þ
ðR1aR2Þ, (54a)

R3 ¼ 0:5ðR1 þ R2Þ ðR1 ¼ R2Þ. (54b)

The loading Vp2 developed at the edge of the ring element defined by the radius R2 in Fig. 8 is

Vp2 ¼
Gp sin a
2pR2

¼
pðR2

2 � R2
1Þ

2R2
. (55)

The torque Tp per unit length about the centroidal axis of the cross section of the ring element due to the
pressure loading p, considered positive for a clockwise rotation of the cross section as shown in Fig. 8, may be
determined by consideration of the forces acting thereon in Fig. 8.
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This development will be clarified if the terms HT
p and V T

p are defined as the radial and longitudinal loads,
respectively, around the total circumference of the ring element and note that

cos a ¼ h=½ðR2 � R1Þ
2
þ h2
�1=2, (56a)

sin a ¼ ðR2 � R1Þ=½ðR2 � R1Þ
2
þ h2
�1=2, (56b)

cot a ¼ h=ðR2 � R1Þ. (56c)

Thus, from Eqs. (53a) and (53b), respectively, we find

HT
p ¼ 2pR3Hp ¼ pphðR1 þ R2Þ, (57a)

V T
p ¼ 2pR3V p ¼ ppðR2

2 � R2
1Þ. (57b)

Hence,

TT
p ¼ V T

p ðR2 � R3Þ �HT
p ðR3 � RÞcot a

¼ pp½ðR2
2 � R2

1ÞðR2 � R3Þ � h2
ðR1 þ R2ÞðR3 � RÞ=ðR2 � R1Þ�

and Tp ¼ TT
p =2pR; resulting in

Tp ¼
p½ðR2

2 � R2
1ÞðR2 � R3Þ

2R
�

ph2
ðR1 þ R2ÞðR3 � RÞ

2RðR2 � R1Þ
. (58)
9. Torque on free ring element due to axial loadings

In addition to pressure loadings on the shell structure, which have been considered previously, we make
provision for the application of loads in the direction of the axis of symmetry. Thus, we require an analysis of
the deformation of each individual ring element under these axial loadings. The loadings to be considered for
any ring element are shown in Fig. 9. These loadings induce a torque TL on the ring, where TL is the torque per
unit length of circumference measured at the centroidal axis of the ring element. It may be seen from Fig. 9
that the total circumferential load applied at the location of R1 is

LT ¼ 2pR1L.

The total circumferential load applied at the location of R2 is also

LT ¼ 2pR2ðLR1=R2Þ.

These two opposing and equal longitudinal forces develop the torque

TT
L ¼ 2pR1LðR2 � R1Þ

and a value of

TL ¼ LR1ðR2 � R1Þ=R. (59)
10. Total torque on free ring element due to external loadings with axial restraint at R2

With axial restraint provided at the edge of the ring element associated with the radius R2, we obtain
the torque due to combined pressure loadings and axial loadings by combining the results from Eqs. (58) and
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(59) to find

T02 ¼ Tp þ TL ¼
pðR2

2 � R2
1ÞðR2 � R3Þ

2R
�

ph2
ðR1 þ R2ÞðR3 � RÞ

2RðR2 � R1Þ
þ

LR1ðR2 � R1Þ

R
, (60)

where the torque T02 is based upon longitudinal restraint at R2.

11. Free ring element displacements due to temperature changes

In our analysis of any shell structure, we make provision for axisymmetric temperature changes throughout
the complete structure. These changes may vary from ring element to ring element throughout the entire
structure. However, we assume that the temperature change Q is constant throughout any single ring element.
We further assume, as tacitly already assumed hereinbefore, that the temperature changes are of
such magnitude that Young’s modulus E and Poisson’s ratio n may be assumed to be constant. Our
displacements in the coordinate directions 1, 2, 3, and 4 and in the axial direction for any particular ring
element will be given by

d1T ¼ bQR1, (61a)

d2T ¼ �bQR2, (61b)

d3T ¼
bQðR2 � R1Þcos a

‘
, (61c)

d4T ¼
�bQðR2 � R1Þcos a

‘
, (61d)

dVT ¼ bQh, (61e)

where b is the coefficient of thermal expansion, and where Q is the ring temperature rise.



Axis of 
symmetry

R1

L

R2

tt

t

p

LR1

LR1

Vp2

R2t

R2
�

�

�

Vp2 Cos

Cos

L �Cos

Fig. 10. Loading and meridional stress assumptions with axial restraint at R2.

T.A. Smith / Journal of Sound and Vibration 318 (2008) 428–460 447
12. Free ring element displacements due to pressure and axial loadings with axial restraint at R2

Our displacements for the coordinate directions 1, 2, 3, and 4 and in the axial direction for a typical free ring
element due to pressure loadings and known axial loadings will be obtained by using the principle of virtual
work as used previously to obtain the ring element influence coefficients. The loadings and meridional stress
diagrams associated with these loadings are shown in Fig. 10. Our stresses sx under these loadings are found
by use of Eqs. (1), (8), and (10) to be

sx ¼ �
T02R

Iz0
ðy cos a� z sin aÞ �

HpR3

A
. (62a)

It may be seen from Fig. 10 that under the loadings L the stresses sy vary only slightly with y. We therefore
assume them to be the average value at the centroid of the ring element cross section. In the case of the
boundary loading Vp2, which is a triangular shaped loading, it is assumed, in accordance with the development
and discussions relative to Eqs. (13)–(16) hereinbefore, that the values of sy will be found closely on the basis
of the value of R at the centroid of the ring element cross-section, with R assumed to be constant between the
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ring element boundaries. We therefore assume sx to be given by

sy ¼ �
L cos a

t

� �
R1

R
þ

V p2 cos a
t

R2

R

� �
y

‘
�

1

2

� �
. (62b)

The accompanying strains are

2x ¼
1

E
ðsx � nsyÞ ¼ �

T02R

EIz0
ðy cos a� z sin aÞ �

HpR3

EA
þ

n
E
þ

LR1 cos a
Rt

�
V p2R2 cos a

Rt

y

‘
�

1

2

� �� �
, (63a)

2y ¼
1

E
ðsy � nsxÞ ¼

1

E
�

LR1 cos a
Rt

þ
V p2R2 cos a

Rt

y

‘
�

1

2

� �� �
þ

nT02R

EIz0
ðy cos a� z sin aÞ �

nHpR3

EA
. (63b)

By applying the principle of virtual work, we have the following equations for obtaining the free ring
displacements due to pressure and axial loadings for the case of axial restraint at the edge of the ring
associated with the radius R2:

2pR1H
0
1d10 ¼

Z
v

2ð0ÞsðH 01Þdv, (64)

2pR2H
0
2d20 ¼

Z
v

2ð0ÞsðH 02Þdv, (65)

2pR1T
0
3d30 ¼

Z
v

2ð0ÞsðT 03Þdv, (66)

2pR2T
0
4d40 ¼

Z
v

2ð0ÞsðT 04Þdv, (67)

2pR1F 01dV0 ¼

Z
v

2ð0ÞsðF 01Þdv. (68)

In Eqs. (64)–(68), the stresses due to H01, H02, T 03, T 04, and F 0x are given respectively by Eqs. (19), (23), (27),
(31), and (34). The strains A(0) are given by Eqs. (63) as Ax and Ay. By making appropriate substitutions of
Eqs. (19), (23), (27), (31), (34), and (63) into Eqs. (64)–(68) and performing the indicated integrations, the
desired displacements d10, d20, d30, d40, and dV0 are found to be

d10 ¼ �
T02R2c

EIz0
�

HpRR3

EA
�

nVp2R2c‘
2 cos2 a

12EIz0
þ

n cos a
2Et

ð2LR1 þ V p2R2Þ

� �
þ
�nT02R‘2 sin a cos a

12EIz0
�

nHpR3 sin a
2Et

�

þ
‘ sin a cos a

6EtR
ð3LR1 þ Vp2R2Þ

�
, (69)

d20 ¼ �
T02R

2d

EIz0
�

HpRR3

EA
þ

nV p2R2 d‘2 cos2 a
12EIz0

þ
n cos a
2Et

ð2LR1 þ V p2R2Þ

� �
�
�nT02R‘2sin a cos a

12EIz0
þ

nHpR3sin a
2Et

�

�
‘ sin a cos a

6EtR
ð3LR1 þ Vp2R2Þ

�
, (70)

d30 ¼ T02
R2

EIz0
þ

nR‘ sin a
2EIz0

� �
þ

nV p2R2‘
2 cos2 a

12EIz0
, (71)
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d40 ¼ �T02
R2

EIz0
�

nR‘ sin a
2EIz0

� �
�

nV p2R2‘
2 cos2 a

12EIz0
, (72)

dV0 ¼ �
T02R2ðR2 � R1Þ

EIz0
�

nVp2ðR2 � R1ÞR2‘
2 cos2 a

12EIz0
�
‘ cos2 a
2ERt

ð2LR1 þ Vp2R2Þ þ
nHpR3 cos a

Et
. (73)
13. Free ring element displacements due to combined pressure, axial loads, and thermal effects with axial

restraint at R2

Our complete shell structure will be composed of a number of ring elements extending in the meridional
direction of the shell from one boundary to the opposite boundary. We assume that one boundary edge of the
shell is that edge located at coordinates 1 and 3 as shown in Fig. 1 and that a radial force HB1 at coordinate 1
and a shell bending moment TB3 at coordinate 3 may be applied as force boundary conditions at that
boundary. For the opposite boundary edge of the shell, we assume the boundary edge located at coordinates
2 and 4 as shown in Fig. 1 to constitute that boundary and that a radial force HB2 at coordinate 2 and a shell
bending moment TB4 at coordinate 4 may be applied as force boundary conditions at this opposite boundary.
We designate the first above-described boundary element as element 1. The second described boundary
element will be designated as element N, where N is the total number of ring elements in the complete shell
structure. For the boundary element 1, our free ring displacements will be given by

D10 ¼ d10 þ d1T þHB1d1H 001
þ TB3d1T 003

, (74a)

D20 ¼ d20 þ d2T þHB1d2H 001
þ TB3d2T 003

, (74b)

D30 ¼ d30 þ d3T þHB1d3H 001
þ TB3d3T 003

, (74c)

D40 ¼ d40 þ d4T þHB1d4H 001
þ TB3d4T 003

, (74d)

DV0 ¼ dV0 þ dVT þHB1dV H 001
þ TB3dV T 003

, (74e)

where the double primes on H1 and T3 denote unit values per unit of circumferential length.
For ring elements 2 through N�1, our free ring displacements will be

D10 ¼ d10 þ d1T , (75a)

D20 ¼ d20 þ d2T , (75b)

D30 ¼ d30 þ d3T , (75c)

D40 ¼ d40 þ d4T , (75d)

DV0 ¼ dV0 þ dV T . (75e)

For ring element N, we have

D10 ¼ d10 þ d1T þHB2d1H 002
þ TB4d1T 004

, (76a)

D20 ¼ d20 þ d2T þHB2d2H 002
þ TB4d2T 004

, (76b)

D30 ¼ d30 þ d3T þHB2d3H 002
þ TB4d3T 004

, (76c)

D40 ¼ d40 þ d4T þHB2d4H 002
þ TB4d4T 004

, (76d)
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DV0 ¼ dV0 þ dV T þHB2dV H 002
þ TB4dV T 004

, (76e)

where the double primes on H2 and T4 denote unit values per unit of circumferential length.
14. Free ring element displacements due to pressure and axial loadings with axial restraint at R1

The loadings and meridional stress diagrams for pressure and axial forces with axial restraint of the ring
element at the edge of the ring associated with the radius R1 are shown in Fig. 11.

The force Vp1 shown in Fig. 11 is given by

V p1 ¼
pðR2

2 � R2
1Þ

2R1
. (77)

By using Eqs. (57) to define Hp
T and Vp

T and considering only the forces due to the pressure loading p in
Fig. 11, the torque Tp, considered positive for clockwise rotation of the cross section, is found to be

TT
p ¼ V T

p ðR1 � R3Þ �HT
p ðR3 � RÞ cot a ¼ p½ðR2

2 � R2
1ÞðR1 � R3Þ � h2

ðR1 þ R2ÞðR3 � RÞ=ðR2 � R1Þ.

Thus, Tp ¼ TT
p =2pR; resulting in

Tp ¼
pðR2

2 � R2
1ÞðR1 � R3Þ

2R
�

ph2
ðR1 þ R2ÞðR3 � RÞ

2RðR2 � R1Þ
, (78)
Axis of 
symmetry

R1

L

R2

t

t

t

p

LR1

LR1

Vp1

R2t
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�

�

�

Vp1 Cos

Cos

L �Cos

Fig. 11. Loading and meridional stress assumptions with axial restraint at R1.
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and the total torque T01 due to combined pressure loadings p and axial load L, by using Eq. (59), is found
to be

T01 ¼ Tp þ TL ¼
pðR2

2 � R2
1ÞðR1 � R3Þ

2R
�

ph2
ðR1 þ R2ÞðR3 � RÞ

2RðR2 � R1Þ
þ

LR1ðR2 � R1Þ

R
. (79)

By using the definitions for Vp1 by Eq. (77), T01 by Eq. (79), and Hp by Eq. (53a), and proceeding in the
same manner as used to find the free ring displacements with axial restraint at R2, we find the displacements
d10, d20, d30, d40, and dV0 under pressure and axial loadings with axial restraint at R1 to be

d10 ¼ �
T01R2c

EIz0
�

HpRR3

EA
�

nV p1R1c‘
2 cos2 a

12EIz0
þ

n cos a
2Et

ð2LR1 � Vp1R1Þ

� �

þ �
nT01R‘2 sin a cos a

12EIz0

�
�
nHpR3 sin a

2Et
þ
‘ sin a cos a

6EtR
ð3LR1 � 2V p1R1Þ

�
, (80)

d20 ¼ �
T01R2d

EIz0
�

HpRR3

EA
þ

nVp1R1d‘
2 cos2 a

12EIz0
þ

n cos a
2Et

ð2LR1 � V p1R1Þ

� �

�
�nT01R‘2 sin a cos a

12EIz0

�
þ
nHpR3 sin a

2Et
�
‘ sin a cos a

6EtR
ð3LR1 � V p1R1Þ

�
, (81)

d30 ¼ T01
R2

EIz0
þ

nR‘ sin a
2EIz0

� �
þ

nVp1R1‘
2 cos2 a

12EIz0
, (82)

d40 ¼ �T01
R2

EIz0
�

nR‘ sin a
2EIz0

� �
�

nV p1R1‘
2 cos2 a

12EIz0
, (83)

dV0 ¼ �
T01R2ðR2 � R1Þ

EIz0
�

nVp1ðR2 � R1ÞR1‘
2 cos2 a

12EIz0
�
‘ cos2 a
2ERT

ð2LR1 � V p1R1Þ þ
nHpR3 cos a

Et
. (84)

By using Eqs. (80)–(84) in lieu of Eqs. (69)–(73) for free ring displacements under combined pressure and
axial loadings with axial restraint at R1, one will find the total free ring displacements as given already in
Eqs. (74)–(76).
15. Formulation of procedure for analysis of axisymmetric shells under axisymmetric loadings

We show a typical shell structure and loading in Fig. 12. The boundary forces HB1, TB3, HB2, and TB4

represent prescribed boundary forces per unit circumferential length at each boundary. The thickness of the
shell and the applied pressure loading p may vary along the shell meridian.

The analysis will be performed by the standard flexibility method of indeterminate structural analysis. Our
matrix form of the continuity equations for this solution is

aF þD0 ¼ 0, (85)

where a is the flexibility matrix for the base structure, F is the column matrix of redundant forces to be
determined, and D0 is the column matrix of displacements under external loadings and temperature changes
for F ¼ 0.

The flexibility coefficients derived heretofore for each individual ring element are based upon an application
of load measured in forces per lineal inch of ring circumference at the load line radius. This will not, in the
general case, produce a symmetric flexibility matrix. In order to obtain a symmetric matrix, the already
derived formulas will be amended to indicate displacements due to application of a total load of unit
magnitude applied around the total circumference at the load line radius. With the indicated revisions, the
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Typical ring element
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Fig. 12. Typical axisymmetric shell structure and loading. HB1 and HB2 are the radial boundary forces per unit circumferential length.

TB3 and TB4 are the meridional moments per unit circumferential length at the shell boundaries.
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flexibility coefficients for an individual ring element are finally obtained as follows:

d11 ¼
R

2pE

c2

Iz0
þ

1

A
þ

nc‘2 sin a cos a
6RIz0

þ
n sin a

Rt
þ
‘ sin2 a
3R2t

� �
, (86a)

d21 ¼ d12 ¼
R

2pE

cd

Iz0
�

1

A
þ
‘ sin2 a
3R2t

� �
, (86b)

d31 ¼ d13 ¼ �
R

2pEIz0
cþ

n‘2 sin a cos a
12R

þ
nc‘ sin a

2R

� �
, (86c)

d41 ¼ d14 ¼
R

2pEIz0
cþ

n‘2 sin a cos a
12R

�
nc‘ sin a

2R

� �
, (86d)
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d22 ¼
R

2pE

d2

Iz0
þ

1

A
�

nd‘2 sin a cos a
6RIz0

þ
‘ sin2 a
3R2t

�
n sin a

Rt

� �
, (86e)

d32 ¼ d23 ¼
R

2pEIz0
�d þ

n‘2 sin a cos a
12R

�
nd‘ sin a

2R

� �
, (86f)

d42 ¼ d24 ¼
R

2pEIz0
d �

n‘2 sin a cos a
12R

�
nd‘ sin a

2R

� �
, (86g)

d33 ¼
1

2pE

R

Iz0
þ

n‘ sin a
Iz0

þ
4‘

Rt3

� �
, (86h)

d43 ¼ d34 ¼ �
R

2pEIz0
þ

‘

pERt3
, (86i)

d44 ¼
R

2pEIz0
�

nl sin a
2pEIz0

þ
2‘

pERt3
, (86j)

where dij represents the deflection in the ring coordinate i due to a unit value of force in coordinate j.
Our revised expressions for individual ring element axial deformations due to unit total circumferential

values of the forces in the coordinate directions 1, 2, 3, and 4 are

dV1 ¼ d1V ¼
R

2pE

cðR2 � R1Þ

Iz0
þ

nl2ðR2 � R1Þ sin a cos a
12RIz0

�
l sin a cos a

2R2t
�

n cos a
Rt

� �
, (87a)

dV2 ¼ d2V ¼
�R

2pE
�

dðR2 � R1Þ

Iz0
þ

n‘2ðR2 � R1Þ sin a cos a
12RIz0

þ
‘ sin a cos a

2R2t
�

n cos a
Rt

� �
, (87b)

dV3 ¼ dVv ¼ �
RðR2 � R1Þ

2pEIz0
1þ

n‘ sin a
2R

� �
, (87c)

dV4 ¼ d4V ¼
RðR2 � R1Þ

2pEIz0
1�

n‘ sin a
2R

� �
. (87d)

For the analysis of the structure, the base structure will be obtained by dividing the structure into a series of
conical ring elements as indicated in Fig. 12. The separate ring elements will be numbered as indicated in
Fig. 13, and the coordinate system for the redundant radial forces and moments will be selected as shown in
Fig. 13.

The column matrix of unknown forces and moments can now be represented as

½F � ¼ ½P1;P2; . . . ;PN�1;MN ;MNþ1; . . . ;M2N�3;M2N�2�
T. (88)

The column matrix of displacements for the base structure, with the redundants removed, can be
represented as

½D0� ¼ ½D10;D20; . . . ;DN�1;0;DN ;0;DNþ1;0; . . . ;D2N�3;0;D2N�2;0�
T. (89)

The flexibility matrix for the structure is represented as

½a� ¼ ½aij�; i ¼ 1; . . . ; 2N � 2;

j ¼ 1; . . . ; 2N � 2:
(90)

The individual elements for the column matrix of displacements may be determined from the following
formulas:

Dn0 ¼ DðnÞ20 þ Dðnþ1Þ10 ; n ¼ 1; 2; . . . ;N � 1, (91a)
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N–1

PN–1

PN–1

PN–2

PN

MN+1
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2
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P2

M2N–1

M2N–2

M2N–2

M2N–3

N

Fig. 13. Coordinate system for redundant radial forces and moments. N ¼ total number of ring elements. The boundary forces are

P0 ¼ 2pR1HB1 and MN�1 ¼ 2pR1TB3 at R1 of ring element 1. They are PN ¼ 2pR2HB2 and M2N�1 ¼ 2pR2TB4 at R2 of ring element N. The

forces P1pPpPN�1 and MNpMpM2N�2 are the total circumferential redundant forces and moments.
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Dn0 ¼ Dðnþ1�NÞ
40 þ Dðnþ2�NÞ

30 ; n ¼ N; N þ 1; . . . 2N � 2, (91b)

where the quantity D20
(n) typically represents the free ring deflection in the coordinate direction 2 for the ring

associated with the ring number n.
The nonzero elements of the flexibility matrix may be determined from the following formulas:

ann ¼ dðnÞ22 þ dnþ1
11 ; n ¼ 1; 2; . . . ;N � 1, (92a)

ann ¼ dðnþ1�NÞ
44 þ dnþ2�N

33 ; n ¼ N ; N þ 1; . . . 2N � 2, (92b)

an;n�1 ¼ dðnÞ21 ; n ¼ 2; 3; . . . ;N � 1, (92c)

anþ1;n ¼ dðnþ2�NÞ
43 ; n ¼ N; N þ 1; . . . ; 2N � 3, (92d)
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aN�1þn;n ¼ dðnÞ42 þ dnþ1
31 ; n ¼ 1; 2; . . . ;N � 1, (92e)

aNþn;n ¼ dðnþ1Þ41 ; n ¼ 1; 2; 3; . . . ;N � 2, (92f)

aN�2þn;n ¼ dðnÞ32 ; n ¼ 2; 3; . . . ;N � 1, (92g)

aij ¼ aji. (92h)

The displacements at the nodal line coordinates for any ring element n may be obtained from

DðnÞj ¼ Pn�1d
ðnÞ
j1 þ Pnd

ðnÞ
j2 þMNþn�2d

ðnÞ
j3 þMNþn�1d

ðnÞ
j4 þ dðnÞj0 ;

n ¼ 1; 2; 3; . . . ;N;

j ¼ 1; 2; 3; 4;

(93)

where dj0
(n) represents the displacements due to all effects except P and M.

The total axial deformation of the structure is obtained from

Dy0 ¼
XN

n¼1

DðnÞV . (94)

The meridional stresses of interest for the boundary face of ring element 1 for the case of axial restraint at R2

may be obtained from

sð1ÞyðAAÞ ¼
6TB3

t
2ð1Þ
1

�
Lð1Þ cos að1Þ

t
ð1Þ
1

�
HB1 sin að1Þ

t
ð1Þ
1

, (95a)

sð1ÞyðBBÞ ¼ �
6TB3

t
2ð1Þ
1

�
Lð1Þ cos að1Þ

t
ð1Þ
1

�
HB1 sin að1Þ

t
ð1Þ
1

. (95b)

The meridional stresses of interest for interior ring elements, with axial restraint at R2 of each element, may
be obtained from

sðnÞyðAAÞ ¼ þ
3MNþn�2

pR
ðnÞ
1 t

2ðnÞ
1

�
LðnÞ cos aðnÞ

t
ðnÞ
1

�
Pn�1 sin aðnÞ

2pR
ðnÞ
1 t
ðnÞ
1

, (96a)

sðnÞyðBBÞ ¼ �
3MNþn�2

pR
ðnÞ

1
t
2ðnÞ

1

� LðnÞ cos aðnÞ

t
ðnÞ

1

� Pn�1 sin aðnÞ

2pR
ðnÞ

1
t
ðnÞ

1

;

n ¼ 2; 3; . . . ;N:
(96b)

The meridional stresses of interest for the boundary face of ring element N with axial load resisted at R02
may be found from

sðNÞyðCCÞ ¼
6TB4

t
2ðNÞ
2

�
LðNÞR

ðNÞ
1 cos aðNÞ

R
ðNÞ
2 t
ðNÞ
2

�
pðNÞ½R

2ðNÞ
2 � R

2ðNÞ
1 � cos a

ðNÞ

2R
ðNÞ
2 t
ðNÞ
2

�
HB2 sin aðNÞ

t
ðNÞ
2

, (97a)

sðNÞyðDDÞ ¼ �
6TB4

t
2ðNÞ
2

�
LðNÞR

ðNÞ
1 cos aðNÞ

R
ðNÞ
2 t
ðNÞ
2

�
pðNÞ½R

2ðNÞ
2 � R

2ðNÞ
1 � cos a

ðNÞ

2R
ðNÞ
2 t
ðNÞ
2

�
HB2 sin aðNÞ

t
ðNÞ
2

. (97b)

It is emphasized here that the loadings L in Eqs. (95)–(97) include the contributions Vp2 from preceding
lower numbered ring elements as given by Eq. (55) and as shown in Fig. 8.

The circumferential strain, Ax, may be determined for the points of interest on any ring from

2
ðnÞ
xðAAÞ ¼

DðnÞ1 � DðnÞ3 ½t
ðnÞ
1 =2� sin aðnÞ

R
ðnÞ
1 þ ðt

ðnÞ
1 =2Þ cos a

ðnÞ
, (98a)
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2
ðnÞ
xðBBÞ ¼

DðnÞ1 þ DðnÞ3 ½t
ðnÞ
1 =2� sin aðnÞ

R
ðnÞ
1 � ðt

ðnÞ
1 =2Þ cos a

ðnÞ
, (98b)

2
ðnÞ
xðCCÞ ¼

�DðnÞ2 þ DðnÞ4 ½t
ðnÞ
2 =2� sin aðnÞ

R
ðnÞ
2 þ ðt

ðnÞ
2 =2Þ cos a

ðnÞ
, (98c)

2
ðnÞ
xðDDÞ ¼

�DðnÞ2 � DðnÞ4 ½t
ðnÞ
2 =2� sin aðnÞ

R
ðnÞ
2 � ðt

ðnÞ
2 =2Þ cos a

ðnÞ
; n ¼ 1; 2; 3 . . . ;N, (98d)

where the subscripts 1, 2, 3, and 4 for D signify displacements in the directions 1, 2, 3, and 4 shown in Fig. 1.
The circumferential stresses, sx, may be determined for the points of interest on any ring element from

sðnÞxðjÞ ¼ E½2
ðnÞ
xðjÞ � bQðnÞ� þ nsðnÞyðjÞ,

n ¼ 1; 2; 3 . . . ;N,

j ¼ AA;BB;CC;DD. (99)

16. Comparison solutions for circular plate and cylindrical shell by the flexibility method and by the governing

differential equations

The procedures that have been developed herein were programmed for the solution of actual cases by use of
an electronic computer. In order to determine the accuracy of typical solutions by the flexibility method, the
solution for a flat circular plate by the flexibility method will be compared with the solution obtained by use of
the governing differential equations as a first case. This flat plate will be fixed at the outer edge and free at the
inner edge. It will be loaded by a uniform load of 100.0 psi on the upper surface. The plate dimensions and
loading are shown in Fig. 14.
Axis of 
symmetry

Plate

(not to scale)

t

R1

R2

p

Fig. 14. Circular plate section and loading.

The loading p ¼ 100psi. Young’s modulus E ¼ 30� 106 psi. Poisson’s ratio n ¼ 0.3. The plate thickness t ¼ 0.25 in. The inside radius

R1 ¼ 5.0 in. The outside radius R2 ¼ 8.0 in. The inside boundary at R1 is free of any restraint and the outside boundary at R2 is fixed

against any displacement.
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Table 1

Circular plate solutions by the flexibility method

Radius (in.) Dv (in.) D3 (rad) sx(AA) (psi) sx(BB) (psi) sy(AA) (psi) sy(BB) (psi)

5.00 0.01876 0.008771 �6578 6578 0 0

5.25 0.01658 0.008644 �6178 6178 �13 13

5.50 0.01444 0.008507 �5577 5577 569 �569

5.75 0.01233 0.008326 �4918 4918 1707 �1707

6.00 0.01028 0.008067 �4035 4035 3354 �3354

6.25 0.00831 0.007701 �2975 2975 5484 �5484

6.50 0.00644 0.007201 �1732 1732 8071 �8071

6.75 0.00472 0.006540 �305 305 11,093 �11,093

7.00 0.00319 0.005692 1310 �1310 14,533 �14,533

7.25 0.00189 0.004637 3113 �3113 18,374 �18,374

7.50 0.00088 0.003349 5105 �5105 22,602 �22,602

7.75 0.00023 0.001812 7284 �7284 27,205 �27,205

8.00 0 0 9651 �9651 32,173 �32,173

Table 2

Circular plate solutions by the differential equation method

Radius (in.) Dv (in.) D3 (rad) sx(AA) (psi) sx(BB) (psi) sy(AA) (psi) sy(BB) (psi)

5.00 0.01867 0.008720 �6540 6540 0 0

5.25 0.01651 0.008597 �6144 6144 �12 12

5.50 0.01437 0.008464 �5600 5600 571 �571

5.75 0.01228 0.008286 �4893 4893 1704 �1704

6.00 0.01024 0.008031 �4014 4014 3351 �3351

6.25 0.00827 0.007669 �2957 2957 5481 �5481

6.50 0.00642 0.007173 �1718 1718 8068 �8068

6.75 0.00470 0.006516 �293 293 11,091 �11,091

7.00 0.00317 0.005674 1319 �1319 14,531 �14,531

7.25 0.00188 0.004624 3120 �3120 18,371 �18,371

7.50 0.00088 0.003342 5108 �5108 22,599 �22,599

7.75 0.00023 0.001808 7286 �7286 27,201 �27,201

8.00 0 0 9651 �9651 32,169 �32,169
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The analysis by the flexibility method will be obtained by dividing the plate into 12 ring elements of one-
fourth of an inch square cross section. Deflections, rotations, and stresses will thus be obtained at both
boundaries and at intervals of one-fourth of an inch between the boundaries. The results obtained by the
flexibility methods of this development are shown in Table 1.

The classical solution is found by solving the governing differential equations so as to satisfy the given
boundary conditions. The solution by use of the governing differential equations is shown in Table 2.

It is seen by comparison of the solutions shown in Tables 1 and 2 that the results by the two methods are in
remarkably good agreement at all locations and for all variables.

The second case to be considered will be a circular cylindrical shell free at both ends with the exception of an
applied total radial load of 10,000 lb at the upper end of the cylinder. The cylinder dimensions and loading are
shown in Fig. 15. The analysis by the flexibility method will be obtained by dividing the cylinder into 12 ring
elements of 0.25 in. square cross section. Deflections, rotations, and stresses will be obtained at both
boundaries and at 0.25 in. intervals between the boundaries. The results found by the flexibility method of this
development are shown in Table 3.
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Fig. 15. Cylinder elevation and loading. The radius of the cylinder R ¼ 6.0 in. Young’s modulus E ¼ 30� 106 psi. The length of the

cylinder L ¼ 3.0 in. Poisson’s ratio n ¼ 0.3. The wall thickness t ¼ 0.25 in. The boundary at the base of the cylinder is free, and the

boundary at the upper end of the cylinder is free with the exception of the total circumferential load H ¼ 10,000 lbs.

Table 3

Cylindrical shell solutions by the flexibility method

z (in.) D1 (in.) D3 (rad) sx(AA) (psi) sx(BB) (psi) sy(AA) (psi) sy(BB) (psi)

0.00 �0.00272 0.002906 �13,358 �13,926 0 0

0.25 �0.00201 0.002745 �8422 �11,728 4810 �4810

0.50 �0.00137 0.002349 �4605 �9144 7087 �7087

0.75 �0.00085 0.001858 �1865 �6616 7623 �7623

1.00 �0.00045 0.001369 �58 �4395 7673 �7073

1.25 �0.00016 0.000935 1005 �2594 5942 �5942

1.50 0.00003 0.000583 1521 �1229 4593 �4593

1.75 0.00014 0.000321 1667 �262 3264 �3264

2.00 0.00020 0.000143 1594 376 2098 �2098

2.25 0.00022 0.000034 1418 760 1172 �1172

2.50 0.00022 �0.000022 1223 960 514 �514

2.75 0.00021 �0.000044 1064 1032 126 �126

3.00 0.00020 �0.000048 970 1011 0 0
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The classical solution is obtained from the fourth-order differential equation with the constants of
integration determined to satisfy the end boundary conditions. The results for the solution found from the
fourth-order governing differential equation are shown in Table 4.

Comparison of the results given in Tables 3 and 4 shows again that the solutions are in generally very good
agreement.

It is seen that the comparison solutions given in Tables 1 and 2 for the flat plate are in general in better
agreement than the comparison solutions in Tables 3 and 4 for the cylindrical shell. This is of interest because
Eqs. (18b), (19b), (23b), (27b), and (31b) for sy are ‘‘exact’’ as given for the cylindrical shell, whereas they
involve the approximation that (R1+s sin a) ¼ R for the flat plate and all other ring elements for which a 6¼0.
We attribute these differences to truncation errors in the solution process with the carrying of only seven digits
in the calculations.
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Table 4

Cylindrical shell solutions by the differential equation method

z (in.) D1 (in.) D3 (rad) sx(AA) (psi) sx(BB) (psi) sy(AA) (psi) sy(BB) (psi)

0.00 �0.00268 0.002805 �13,411 �13,411 0 0

0.25 �0.00200 0.002644 �8525 �11,426 4835 �4835

0.50 �0.00138 0.002269 �4740 �9041 7168 �7168

0.75 �0.00087 0.001809 �2008 �6669 7768 �7768

1.00 �0.00047 0.001348 �187 �4550 7270 �7270

1.25 �0.00019 0.000939 905 �2797 6169 �6169

1.50 0 0.000605 1457 �1437 4822 �4822

1.75 0.00012 0.000354 1642 �440 3470 �3470

2.00 0.00018 0.000181 1606 248 2262 �2262

2.25 0.00022 0.000075 1465 696 1282 �1282

2.50 0.00023 0.000020 1306 963 571 �571

2.75 0.00023 0 1187 1101 143 �143

3.00 0.00023 �0.000003 1141 1141 0 0
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17. Conclusions

It has been shown that the circumferential stresses (sx) in a ring element under axisymmetrically applied
radial forces or edge moments can be determined ‘‘exactly’’ by simple flexuere formulas without any need to
assume a stress or displacement field as is usually done in finite element analysis. It has also been shown that
all significant bending and direct stresses (sy) in the meridional direction of the ring element due to radial
forces and edge moments are found very closely by an assumption of a linear variation of stress between the
boundary edges of the ring element.

It is seen by comparison of the solutions given in Tables 1 and 3 for solutions by the flexibility methods of
this article and in Tables 2 and 4 for solutions obtained from the governing differential equations that the
agreement is remarkably good at all node points and for all variables. Results not shown here or in Ref. [8] for
actual shell structures of irregular meridional geometry and variable wall thicknesses have shown remarkably
good agreement with test results.

We also mention a significant advantage of the procedures developed here over the more commonly used
finite element methods of analysis in which the form of the displacement field is assumed. In this development,
circumferential stresses in the ring element are computed directly by the ‘‘exact’’ formulae, Eqs. (8) and (10),
thus leading to quite accurate influence coefficients that yield correspondingly accurate analytical results. The
primary assumption used here in regard to meridional stresses is that, for the determination of influence
coefficients, the meridional stresses vary linearly in the meridional direction of the element, a very good
assumption for the expected dimensions of the ring thickness and distance between edges of the ring elements
in the meridional direction of the shell.

It is concluded that the flexibility methods outlined herein may be used to obtain reliable and quite accurate
values for the displacements and stresses in axisymmetric shell structures under axisymmetric loadings.
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